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Abstract—A numerical and experimental study is reported for the case of two-dimensional buoyancy-
driven convection in saturated horizontal packed beds. The classical Darcy model is extended by the
Forchheimer (inertial) term and the effective thermal conductivity of the medium is represented by the
sum of a stagnant and a (hydrodynamic) dispersive component, the latter being proportional to the local
filtration velocity amplitude. Bifurcation analysis of the porous Bénard problem with dispersive and inertial
terms proves that the results of the classical Darcy model still hold at the onset of convection for weak
dispersion. Both terms are important for steady convection in shallow packed beds. The effect of dispersion
on Nusselt number is stronger than that of inertia unless the Prandtl number of the porous medium is of
order 0.01 or less. The ratio of layer thickness to bead diameter is shown to be a significant parameter of
the problem that can help explain some contradictory experimental results.

1. INTRODUCTION

ANALYSIS of buoyancy-driven convection in coarse
porous layers—as exemplified by packed beds of
spherical beads—is motivated by applications related
to insulation or energy storage systems. Traditionally,
a fluid-saturated packed bed is treated as a continuum
if the layer thickness L is sufficiently larger than the
bead diameter d. However, experiments by Close et
al. [1] in shallow horizontal packed beds (small L/d
ratio) indicated that the results of the continuum
approach might be still valid near the onset of con-
vection. In the present work, we assume that the con-
tinuum model holds and we simply compare its pre-
dictions with experiments. In the following, we will
consider the problem of natural convection in a fully-
saturated packed bed bounded by isothermal imper-
vious horizontal surfaces of infinite extent with the
lower surface being hotter than the upper. The system
bifurcates from conduction to convection when a criti-
cal value of the temperature gradient is exceeded and
this will be referred to as ‘the porous Bénard problem’,

Careful analysis of the heat transfer measurements
for the porous Bénard problem by Combarnous [2]
and Close et al. [1] shows that the ratio L/d should be
considered as an additional parameter of the problem
and suggests the need to extend the classical Darcy
formulation. The work of Neischloss and Dagan [3]
for natural convection and of Rubin [4] for forced
convection are early attempts to accomplish this by
considering the augmentation of the effective heat
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conductivity due to hydrodynamic dispersion.
Although the two analytical works mentioned above
employed different dispersivity models, they both pre-
dicted a reduction of the heat transport through the
layer as the ratio L/d decreases. Based on heat transfer
experiments in beds containing 2-5 layers of poly-
propylene beads, Close er al. [1] reached the same
conclusion but suggested that this reduction is an
inertial effect. They pointed out that their Nusselt
number data for 5 layers (L/d = 3.87) lie below the
Nusselt number data of Combarnous [2] for water-
saturated beds consisting of 17 layers of poly-
propylene beads (L/d = 13.37). An inconsistency is
revealed if we examine the two sets of Nusselt number
measurements by Combarnous [2] for water-satu-
rated beds (of constant thickness) obtained for two
sizes of glass beads d =4 and 1.7 mm the Nusselt
numbers for the former lie above the ones for the
latter. The same trend is also verified for the water-
saturated beds of quartz beads.

Kvernvold and Tyvand [5] solved numerically the
porous Bénard problem employing the same dis-
persion mode! as Neischloss and Dagan [3] and found
that, although for small Rayleigh numbers the heat
transport decreases with decreasing L/d (same as the
result of Neischloss and Dagan {3]), for larger Ray-
leigh numbers the opposite happens. An attempt to
reduce the scatter in the Nu vs Ra,, data in the litera-
ture was reported by Prasad et al. [6] who used a
constant effective conductivity that is a function of
the convective state (Ra,,) and of the physical prop-
erties of the medium. They implemented an iterative
implicit scheme to compute this effective conductivity
in terms of existing experimental Nusselt number
data, but no physical mechanism was provided to
justify the specific formula for the conductivity, as
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- thermal diffusivity of the medium,
kn/(pc)s [m?*s 1]

Ao, 4, Fourier coefficients of the velocity
amplitude, equation (13d)

b inertial resistance coefficient in equation
(5) [m]

¢ specific heat [JTkg™ 'K~

C dispersion coefficient, equation (7}

d spherical bead diameter [m]

D*  ratio of dispersive to stagnant
conductivity, equation (3)

Da  Darcy number, y/L>

Di dispersivity in equation (7), Cd/L{1 —¢)

g gravitational acceleration in the

z-direction [ms~?
k* effective thermal conductivity of the
medium, equation (6) [Wm™ 'K~ 1]
ke stagnant thermal conductivity of the
fluid—solid medium, equation (6)

[Wm™'K"]

K total number of Fourier modes in the
y-direction

L thickness of the porous layer [m]

Nu  Nusselt number, equation (15)

P average pressure of the interstitial fluid

Pe  Peclet number, |g'[(dfap(1—¢) ' =
lq{d/ LY (e R} (1 =)~

Prandtl number of the medium, v{pc);/k,,
q dimensionless Darcy superficial velocity
Rayleigh number, gBATL?/(va,)

porous Rayleigh number, Da Ra

t time [s]

T dimensionless temperature (T — To)/AT

NOMENCLATURE

AT temperature difference, Ty — T¢ [K]
v,w  horizontal, vertical velocity components,
respectively
¥,z horizontal, vertical Cartesian
coordinates, respectively.
Greek symbols
o dimensionless wave number, 2x/4
B volumetric thermal expansion coefficient
of the fluid [K~1]
y porous medium permeability [m?]
8 dimensionless temperature perturbation
v kinematic viscosity fm®s~]
p density [kgm™7]
¢ porosity
@ inertial drag coefficient, bL/y Pr,,,
Subscripts
C cold
f fluid
H hot
k kth order
m porous medium
0 horizontal average, zeroth order.
Superscripts
c critical value

,

dimensional.

Special symbols
D z-derivative
{.>  volume average over the flow domain
O(.) order of magnitude.

Close [7] pointed out. When some data for low L/d
values still diverged, it was postulated that the Darcy
law fails (Fig. 18 in the paper of Prasad et al. [6]).
Georgiadis and Catton (8] included the inertial
(Forchheimer) term in the momentum equation and
used the measured values of the stagnant effective
conductivity in the energy equation. Their numerical
predictions of the heat transfer reproduce the large-
scale scatter of the Nu vs Ra,, data of Jonsson and
Catton [9] for the porous Bénard problem. According
to the above model, the inertial effect (its relative
importance being expressed by the parameter w Da
that is proportional to d/L Pr,) diminishes the net
heat transfer. Hence, the Nusselt number predictions
of the classical Darcy mode!l {w = 0) should be the
upper bound. However, the Nu measured by Com-
barnous [2] for natural convection in polypropylene
packed beds saturated with water or oil exceed the
maximum Nu of the Darcy model (obtained by using
the wave number that maximizes Nu). In view of the
contradictory (i.e. non-monotonic} behavior of the

Nu vs L/d results found in the literature, it is obvious
that another physical mechanism has to be taken into
account in combination with inertia. The enhance-
ment of conductivity due to dispersion is a likely can-~
didate. Both inertia and dispersive effects have been
previously considered by Rubin [4] for forced con-
vection, by Cheng and Zheng [10] for mixed con-
vection boundary-layer flow, and by Hong and Tien
{11] for vertical-plate natural convection in porous
media.

The mission of the present work is to demonstrate
the role of dispersion on heat transport when the
boundary-layer approximation is not applicable and
the Forchheimer formulation is adopted for natural
convection in porous media. A canonical problem is
chosen for this purpose (the porous Bénard problem).
The way in which the dispersive component enters the
formulation is explained in Section 2 and the non-
Darcian effects on the onset of convection are studied
by performing a simple bifurcation analysis in Section
3. The numerical algorithm is developed in Section 4
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FiG. 1. The porous Bénard problem: natural convection in a fully-saturated packed bed bounded by
isothermal impervious horizontal surfaces of infinite extent with the lower surface being hotter than the
upper.

and its convergence is checked. Finally, the numerical
solution is compared to experiments in Section 5 and
a summary of the concluding remarks is presented
in Section 6. This is a companion to the paper by
Georgiadis and Catton [8].

2. FORMULATION OF THE PROBLEM

The flow domain of the porous Bénard problem is
shown in Fig. 1. The packed bed is fully saturated with
a Boussinesq incompressible fluid. The heterogeneous
system fluid—solid matrix is regarded as a continuous
medium on the Darcy scale. Thus, we assume that the
convective motion of the interstitial fluid in the fully-
saturated packed bed is governed by the following
equations in non-dimensional form:

Viq=0 )]
1 oq " 1
YN T ~VP+Ra Tez—D—aq—wlqlq 93]
(PO 0T
(’;C) o = —CVT+V[(1+DYVT]  (3)
f

where length, velocity, pressure, temperature are
scaled with L, a,/L, pva,/L? AT, respectively, P
the local interstitial pressure minus the hydrostatic
component, and T the local temperature minus the
cold wall temperature T. The governing equations,
equations (1)—(3), are supplemented by the following
boundary conditions :

q-é,=0,T=1 at z=0;

C))
q:é,=0, T=0 at z=1.
The following standard empirical relations are used
to give the permeability and inertial resistance
coefficient, cf. Georgiadis and Catton [8]:

S 175
TETs0(1=9) T 150(1—9)

We cannot avoid mentioning that the correct for-
mulation of the problem of convection through
porous media remains a point of major contention in
the literature. Concerning the momentum equation,
many researchers are in favor of the following ‘full’
form [12]:

)

2
[—q +q'Vq] — _VP+RaTe.

¢ Pr,| 0t

1 1_,
- mq—wlqlq+ EV q.

Let us present our arguments for reducing the equa-
tion above to equation (2). There is no controversy
concerning the Darcian drag term (third term on the
right-hand side). For the Bénard problem, the last
term on the right-hand side of the above equation
(Brinkman’s extension) has been proven to have a
negligible effect on the onset of cellular convection if
Da < 1073, In our computations, the maximum value
of Da remains close to 1073, The magnitude of Da
expresses the ratio (Brinkman term)/(Darcy drag)
away from the solid boundaries. Near these bound-
aries, the Brinkman term is significant because the
shear increases to accommodate the no-slip condition.
The latter condition is entirely empirical and has been
introduced for convenience. An additional com-
plication of the problem of imposing the proper
boundary conditions (at the interface between the
packed bed and the wall) is introduced by the porosity
variation due to the presence of solid walls. This
induces higher velocities near the boundaries (chan-
nelling phenomenon) which, based on the analysis of
Hong et al. [13] enhances the Nusselt number. We
performed some preliminary computations for the
Bénard problem with a variable porosity model and
our results indicated that the relative increase of the
Nusselt number due to porosity variation near the
walls is almost balanced by the decrease of Nu pre-
dicted by the Brinkman-extended model. It makes
sense that, had we chosen to introduce the Brinkman
extension in equation (2), we would have to account
for the porosity variation near the walls (especially
for the coarse packed beds) in order to be consistent.
Its theoretical justification pending, Brinkman’s term
is dropped and we consider here the case of a constant
porosity medium. The slip condition is imposed at
the solid walls. The magnitude of the Forchheimer
quadratic inertial term in the ‘full’ equation (fourth
term on the right-hand side) is of order 1.75(L/d)
(1—¢)¢~2 with respect to the convective inertial
term. Therefore, the latter can be neglected even
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FIG. 2. Effective axial thermal

for the coarse packed beds considered in Section 5.

It is plausible to assume that there are no steep
temperature gradients in natural convection and that
the convective velocities are sufficiently slow for the
range of Rayleigh numbers considered. Consequently,
local thermodynamic equilibrium prevails, cf. Whi-
taker [14], and we postulate that the one-equation
model (3) can accurately describe the heat transfer
process in the homogenized porous medium. The form
of the energy equation (3) was derived by Georgiadis
and Catton [15] for steady-state heat transport in a
steady isotropic interstitial field. The appearance of
D* in the heat transport coefficient in equation (3)
represents the enhancement of the heat transfer that
is caused by the hydrodynamic mixing (dispersion) of
the interstitial fluid at the pore scale. According to
the stochastic phenomenological model developed by
Georgiadis and Catton [15] for isotropic porous
media, the ‘effective’ heat conduction coefficient can be
written in the form

k*  kn

—= C Pe 6
k= ks + (6)
where k,, is the (stagnant) value of the effective con-
ductivity of the system porous matrix-fluid in the
absence of convection. Due to equation (6), the
dimensionless dispersive conductivity component in

equation (3) becomes
__¢4
T1-¢ L

In principle, the value of the dispersion coefficient
C in equations (6) and (7) depends on the type of
packing of the bed. For a certain type of Gaussian
packing [16] and ¢ = 0.39, our model gives C = 0.43,
and this seems to underpredict (for the range Pe > 20)
the values of the effective axial conductivity measured
by Levec and Carbonell [17] under transient con-
ditions (Fig. 2). The aforementioned discrepancy can

D* lgl = Dilql. Q)

conductivity in packed beds.

be attributed to the transient heat exchange con-
tribution to the apparent transport coefficient. Geor-
giadis and Catton [15] proved that, by adding this
contribution—as estimated by Levec and Carbonell
[17]—to expression (7), a realistic estimate of the
effective axial transport coefficient under transient
conditions is obtained that agrees with measurements
for the whole range of Peclet numbers. Therefore,
expressions (6) and (7) remain valid for steady-trans-
port through packed beds irrespective of the Peclet
number. We decided to perform our calculations with
the value C = 0.36, which gives the best fit of the data
obtained by Levec and Carbonell [17] for the range
0 < Pe <20 as shown in Fig. 2. This includes the
range of Peclet numbers (0 < Pe < 10) encountered in
natural convection for the range of Rayleigh numbers
that we considered during the course of our com-
putations. For comparison, we also plot in Fig. 2
the curve corresponding to the quadratic dispersion
model used by Kvernvold and Tyvand [S] which
clearly underpredicts the data for approximately the
same range of Peclet numbers. The quadratic dis-
persion model was based on the analytical work of
Saffman [18] who suggested a quadratic dependence
of the effective transport coefficient on velocity for
asymptotically small Peclet numbers.

3. ONSET OF CONVECTION:
BIFURCATION ANALYSIS

The basic solution of equations (1)—(4) is the con-
ductive state

=0 T,=1-—z

Following the formulation of Joseph [19], we set # =
Ra)?, rescale § = #(T— T,), and derive the following
perturbation equations from equations (1)-(4) and

7
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Da dq "
g pr. 3 T4~ #0&+0Dagla = —DaVP (82)

(pc) 80
S 4 q-VO—Rw—V0
(o), ot T4

—~DiV- {|qi(Vé6—%&)} =0 (8b)
(9.H)es, F=I[q,0:V-q=0in Q,
n-V6=90 on S,
=0o0nz=0,1] (8)

qg'n=90 on 2Q,

where 0Q is the boundary of the flow domain, n its
unit normal vector and S the lateral boundary which
is assumed to be insulated. In order to reconcile our
assumption of the laterally unbounded porous layer
with the existence of a “slip” lateral surface S, we can
identify the latter with the vertical boundary enclosing
a pair of counterrotating rolls of width 4 (Fig. 1).
Such a cellular form appears after the onset of the
convective motion as we will show in the next para-
graph. The corresponding two-dimensional  y, z) flow
domain is Q = [0, 1] x [0, 1].

Denoting by Q the four-component vector with
components (q, 6), the bifurcation problem (8) can be
written in matrix form

L-Q+N(Q)= —DaVp; Qes ®

where L and N are 4 x 4 matrix linear and non-linear
operators, respectively. We try a double expansion in
terms of the classical bifurcation parameter ¢ and Di.
There is no power series in € because |q| (Which appears
in the non-Darcian terms of equations (8a) and (8b))
is not analytic. It is probably valid to assume {20] that

R, Di) = Roy+eR,+DiR,+0(e, Dy (10a)
Q(e, Di) = eQo+£7Q, +eDiQ,+o0(e%, eDi)  (10b)

where Q, is the solution of equation (9) that bifurcates
from the basic state (conduction) when #Z(¢ = 0) =
R,. Inserting expansion (10) into equation {9), im-
posing boundary condition (8¢c), and following the
procedure outlined in Section 76 of Joseph [19],
we obtain

0@):  Rolwobo) = Iaol (11a)
0F): 2R (W) = {wnaqqom}l‘z—l (11b)
O Di): Ry =0 (11¢)

where w, is the z-component of g, and (q,, ,) are the
components of Q,. The angular brackets designate
the volume-averaged integral defined on the flow
domain Q. The lowest order problem (O(g)), which is
the spectral problem for the stability of the conduction
solution (basic state) of equations (1)—(3), is identical
to the zeroth order problem in the Darcy porous
Bénard formulation (no inertia or dispersion terms),
cf. Joseph [19]. Consequently, this spectral problem
has a simple real eigenvalue (zero), convection starts
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in the form of two-dimensional rolls, and the critical
parameters corresponding to the onset of convection
are

Ro=JRal, =2m, of=m. (12)

Equation (11a) is the energy identity obtained for
¢ = 0 by multiplying the momentum equation (8a) by
q and averaging over Q. From equations (12) and
{11a) we deduce that {wf,) is positive definite. Equa-
tions (11b) and (11c) are the solvability conditions
(section 76 of Joseph [19]). As a result of the existence
of non-analytical terms in equations (8), £, is not
unique but reverses its sign around ¢ = 0. Since (g, 0,)
are uniquely defined, equations (11a) and (11b) imply
that ¢, is proportional to |e}. Equation {1 1c) implies
that the contribution of dispersion to the onset of
convection is null, correct to O(Di). Hence, the bifur-
cation curve # has a vertex at #, and two symmetric
supercritical bifurcation branches. This result has also
been reported by Nield and Joseph [21] for the special
case Di = 0.

We have shown that, for weak dispersion (Di « 1),
neither the Forchheimer term nor the dispersion con-
tribution influence the onset of convective motion
as defined by equations (12). This has been verified
(within experimental error) by Close et /. [1] even for
the case of very coarse packed beds (low L/d ratio)
such as the one consisting of only two layers of spheri-
cal beads. The insensitivity of the critical convection
parameters of the porous Bénard problem to dis-
persion has also been proven by Neischloss and
Dagan [3] for the quadratic dispersion model sug-
gested by Saffman [18]. Employing the same model,
Kvernvold and Tyvand [5] went further and delin-
eated the linear stability regime for two-dimensional
convection. According to their calculations, dis-
persion (D* # 0) extends the stability ‘balloon’ and
thus the flow remains stable to cross-roll instabilities
for Rayleigh numbers larger than the ones predicted
by the classical Darcy model.

4. NUMERICAL SOLUTION
OF FINITE AMPLITUDE
TWO-DIMENSIONAL CONVECTION

Based on our conclusion in the previous section
that convection in the porous Bénard problem is
initiated in the form of straight horizontal rolis, we
seek a steady two-dimensional solution of equations
(1)~(4) in terms of the following Fourier expansions
which have been truncated to K terms:

K
v(p,2) = J2 Y vi(@)sinay (13a)
k=1

w(y,z) = /2 i wi(2) cos ay ¥ (13b)

K
T(y,2) = To(2) +/2 Y. Ti(2)cosey  (13¢)
ko 1
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gl = /(W +v7) = /244(2)
K
+/2 Y Ad2)cosay (13d)
k=1

where o, = ka. By substituting equations (13) into
equations {I)-(3), eliminating the pressure, and
weighting and integrating over the wavelength, we
obtain the weak formulation of the problem as a sys-
tem of Galerkin ODEs

o+ Dwy =0 (14a)

ﬁ(Dz—az)wk+a RaT, = o(Df+ai f5)
(14b)
(1++/2DiAg) D*Ty+./2DiDA4, DT,

= f D(w,+T,) — Di i D(4, DT (l4c)
k=1 k=1

D
[(l+\/2DiA0)+ —IAZ;(]DZT&

J2

1
- [:/—i (Wzk“DiDAzk) —\/ZDiDAO]DTk

Di 1
—| (1 +./2Didal — —Ayo}i+ —D ]T
[( \/ i Ao \/2 2% 2\/2 Wor | 1k

! Z Z[(W — DiDA,)DT,,

\/2mlnl

+ Dl(‘xm Tm - Dsz)An]IZ(k9 n, m)

+4 Z Z( Dw,— Dia,a, A)Tmll(n,m,k}

mlnl

— Di 4, DT+ (w,— DiDAY DT, (14d)

where the notation introduced by Georgiadis and
Catton [8] is kept. The functionals f%, f% in equa-
tion (14b) are the projections of the non-linear terms
of the momentum equation (8a) onto mode k

\/2on,(+\/ Z ZUA Ik, n,m)

mlni

Z z w, A, I (k, n,m)

mln—

f2~\/2A0wk+\/

and I,(k,n,m), I,(k,n,m) are the convolution pro-
ducts defined by Georgiadis and Catton [8] that take
the values 1, — 1 and 0. The expression for the Nusselt
number which represents the net heat transfer across
the layer becomes

o T

~ —DTy(0)— Di[\/ 24,0 DT{0)

+ ‘Z A,(0) DTk(O)]. (15)

J. G. Georciapis and 1. CaTtTON

Table 1. Nusselt number convergence of the Fourier expan-
sion (100 z-grid points)

K Nu [Nug. o — Nul x 10°
4 1.58659 256
6 1.58870 45
8 1.58904 11
10 1.58913 2
12 1.58915 ——

The expression above is equivalent to an L, (weak)
norm of solution (13).

The 2K+1 ODEs, equations (14b)—(14d), are
approximated with centered finite differences on a
uniform grid in the vertical z-direction and solved
iteratively. Expansion (13d) is the basic transfer for-
mula for the implementation of a pseudospectral (col-
location) scheme that we employ. At each iteration,
the Fourier coefficients 4,, 4,, 4, . . . , 4; (spectral
space) are computed with a discrete Fourier transform
after solving equations (14a)-(14b) and evaluating {qj
on a number of equally-spaced points (physical
space). At least 2K sample points are needed for the
Galerkin method to avoid aliasing errors; we per-
formed our computations with 100 sample points per
wavelength. The iterations are terminated after the
following pointwise-error criterion is satisfied :

max max {w{*"—wd|,

I<k€K O0<zx1

[T+ — (16)

where (i) is the interation counter. The error tolerance
in expression (16) was chosen so that the iteration
error is smaller than the truncation error induced by
the spectral and finite-difference approximations.

In order to check the accuracy and convergence of
the numerical scheme as outlined above, we solve
equations (14) for the sample case Ra, =72,
w Da = 0.0432, Di = 0.2312, o = n which corresponds
to the air-saturated bed with 3 layers of polypropylene
beads (Section 5). Firstly, we check the convergence
of the Fourier series with respect to the weak norm
L, as represented by the Nusselt number (15). Com-
putations are performed on a uniform z-grid (100
points) for increasing truncation orders K and the
results are displayed in Table 1. As X increases, Nu
converges at a fast exponential rate. Secondly, tests of
Nu and pointwise convergence of the finite-difference
scheme are performed by decreasing the mesh size
across the layer for constant K =6 (Table 2). The

TO) < 10-¢

Table 2. Nusselt number and pointwise convergence of the
centered finite-difference scheme for K =6

z-Grid points Nu T,(04)x 10 w,(0.4)
25 1.59709 6.5532 2.150307
S0 1.59070 6.5185 2.138275
100 1.58870 6.5089 2.134932
200 1.58811 6.5063 2.134051
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Fi1G. 3. Heat transport in water-saturated beds of glass beads: dispersion effects for high L/d values.

results demonstrate that the finite-difference scheme
converges at a quadratic rate as the mesh size
decreases. This is the theoretical convergence rate for
the second-order (centered) difference approxima-
tions that we employed. The computations reported
in the next section are performed with a mesh size
of 0.01 (100 z-grid points) and X = 6 Fourier modes
in expansion (14).

5. NUMERICAL RESULTS AND COMPARISON
WITH MEASUREMENTS

The first case to be considered is that of a water-
saturated bed of glass beads. Steady-state heat trans-
fer measurements were performed by the authorsina
convection cell of rectangular cross-section of dimen-
sions 0.125x0.152 m randomly packed with glass
beads of diameter d = 6 mm and saturated with dis-
tilled water. The experimental procedure used is simi-
lar to the one presented by Jonsson and Catton [9].
In our calculations, we use the values of porosity
¢ = 0.394, stagnant conductivity k, = 1.1 W m™!
K~ ' and permeability y = 3.7 x 10~® m? which have
been measured by Jonsson and Catton [9] for the same
water-saturated glass beads. Using tabulated data for
distilled water at a mean temperature of 13°C, we
obtain Pr,, = 4.5 and the rest of the input parameters
are calculated from equations (5) and (7) with
C =10.36.

In Fig. 3, we present the predicted values of the
Nusselt number for Ra,, = 60 and 100 and the fol-
lowing parameter ranges:

5.25 < Ljd < 1050
411x10"° <@ Da<822%x107*
0.0006 < Di < 0.1132.

We also plot for comparison the Nusselt numbers
obtained by interpolation of the experimental data
obtained by the present authors for Ljd =35 and 10

Table 3. Thermophysical data for air-saturated beds of poly-
propylene beads {(d = 18.4 mm)

Number
of layers L/d ¢ Pr, wDax10? Di
~ 17 13.37  0.260 0.1484 0.7947 0.0364
5 3.875 0332 0.1484 3.0366 0.1391
3 2,467 0369 0.1735 4.3196 0.1735
2 1.761 0409 0.1919 5.8421 0.3459

and of data reported by Combarnous [2] for
L/d = 13.37 and 31.5. The error margins shown in
Fig. 3 correspond to + 10% error in Nusselt number
as estimated by the present authors. The computed
Nusselt numbers are obtained for several wave num-
bers close to the critical. We assume that the selected
wave number for each Ra,, does not depend on the
parameter L/d. For each wave number, the predicted
Nu vs L/d curves show a maximum and approach the
Forchheimer model curves (Di = 0) asymptotically as
Ljd — oc. This trend is justified by the experimental
evidence available. There is very little difference be-
tween the Nusselt number predictions of the Forch-
heimer model and the Darcy model (w = Di=10), a
fact that is expected since the relative importance of
the inertial term is expressed by the parameter w Da,
which happens to be small in the case above. Note
that Nusselt numbers higher than the Darcy pre-
dictions can be attained for certain values of L/d only
if Di # 0.

The second set of numerical calculations cor-
responds to the experiments in air-saturated ordered
beds of polypropylene beads performed by Close et
al. [1]. For the cases of 2, 3, and 5 layers, we use
the measured values of porosity and stagnant porous
medium conductivity given by Close et al. [1]. Based
on the latter, on thermophysical data for air at a mean
temperature of 45°C, and on relations (5) and (7) with
C = 0.36, the input parameters for the computations
are evaluated and presented in Table 3. For the case
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Table 4. Numerical predictions of the Nusselt number of the porous Bénard
problem (air-polypropylene beds) for the critical wavelength

Kvernvold
and
Tyvand [5] Present work
Darcy Forchheimer Dispersion
Ra/Ra:, Darcy Disw=0 Di=0 Di = 0.0364
1.2 1.352 1353 1.293 1.264
1.6 1.870 1.872 1.767 1.807
1.8 2.072 2.075 1.954 2.052
i T I i T l
EXPERIMENTS
30+ Close ?;‘:‘;‘_{ No.of 17 Lcyers he
(1985) L/d Layers
25~ o 387 5 «—3 ?
. 247 2.9
20 b T 176 -
Nu / /
15 b //%/ PREDICTION
(a=7)
/ »é// ————— Darcy
N = === Forchheimer
10+ Dusperslve
40 50 60 80 !OO 140
Ram

Fia. 4. Effect of the ratio L/d on heat transport in air-saturated beds of polypropylene beads (d =

L/d = 13.37, we assume that the porosity has reached
the minimum possible value for the rhombohedral
packing (highest density) and that the stagnant con-

ductivity is the same as in the § layer case. All the

computations are performed for the critical wave
number ¢° = 7.

In Table 4, we first compare the predictions of the
Darcy model {w = Di = 0}, of the Forchheimer model
(Di = 0), and of the full dispersion model, equations
(1)~{4), for the case L/d = 13.37 (~ 17 layers of air-
saturated polypropylene beads). The results of our
comnutations for the Darcv-Rénard nroblem agree

COMPRLALIQNS 10O ¢ AAalvy—22elial proxan

very well with the results of Kvemvold and Tyvand
[5]. As Fig. 4 shows, dispersion lowers the Nusselt
number for low Ra,, values but this trend is reversed
as Ra,, increases. The effect of dispersion becomes
more dramatic as L/d decreases for 5, 3, and 2 layers
of beads; the good agreement with the measurements
of Close et al. [1] is encouraging. On the other hand,
it is evident that the Nusselt number predictions of
the Forchheimer model (only inertial effects con-
sidered) do not follow the large divergence of the
experimental data (Fig. 4). This demonstrates the
importance of dispersion on natural convection in
shallow (coarse) packed beds.

The following general observations are based on

the computed velocity and temperature fields in the

18.4 mm).

porous Bénard problem when the inertia term is small.
The inertia effect depends on the magnitude of the
porous Prandtl number as we will show in the next
paragraph. Digpersion always decreases the mean
temperature gradient DT o(z) (since it augments the
effective conductivity of the medium) but the net effect
on the total heat transport is more complicated. As
L/d — o (e.g. in geophysical porous layers like aqui-
fers and field soils), the velocity and temperature
gradient vary very little and thus, according to equa-
tions (7) and (15), the net heat transport approaches
the Forchheimer limit. As L/d decreases from large to
medium values (packed beds found in the laboratory),
the velocity and temperature gradient also decrease
but Di increases proportionally to d/L ; the net effect
on the Nusselt number, equation (15), is that it reaches
a maximum value and then decreases. It is in this
regime of low L/d values that the contribution of the
present work becomes apparent, Qur results indi-
cate—and this is verified by experiments—that the
Nusselt number predicted by the Darcy model cannot
be considered as an upper bound on the heat transfer.
Although inertia always decreases Nu, dispersion can
act to increase or decrease it (Table 4). For natural
convection from a vertical plate imbedded in a packed
bed, Hong and Tien [11] concluded that dispersion
increases Nu. Our numerical solution shows that ther-
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Table 5. Numerical predictions of the Nusselt number of the porous Bénard problem

(mercury-lead beds) for the critical wavelength and Ra,, = 60

Nu

Darcy Forchheimer
Lid w Da Di Di=w=0 Dispersion Di=0
5.26 0.1782 0.1136 1.7817 1.2039 1.1181
13.15 0.0720 0.0435 1.7817 1.3328 1.3065
26.31 0.0357 0.0226 1.7817 1.4786 1.4654
52.62 0.0178 0.0114 1.7817 1.6027 1.5905
263.1 0.0036 0.0023 1.7817 1.7400 1.7349
2631.0 0.0004 0.0002 1.7817 1.7774 1.7768

mal dispersion can have a stronger effect on the net
heat transfer than that of inertia. The latter conclusion
was also reached by Cheng and Zheng [10] for mixed
convection.

Let us see what happens when inertia becomes as
important as dispersion. Based on the governing equa-
tions for the porous Bénard problem, equations (2),
(3), and (7), the dispersive term is of O(d/L), while
the magnitude of the inertia term is @ Da which is of
O(10~%d/L Pr,;") when ¢ = 0.4. Thus, inertia cannot
be neglected compared to dispersion when the porous
Prandtl number is of O(10~2) or less. We report here
some numerical results for such a case: convection
in a mercury-saturated bed of lead beads with
Pr,, =0.018. The thermophysical parameters are
given in the experimental work of Jonsson and Catton
[9] who reported Nu measurements only for one fixed
thickness bed with L/d = 26.31. In Table 5, we list the
numerical prediction of Nu as a function of L/d, for
Ra,, = 60, « = 7. In contrast to the trend of the large
Pr,, results of Fig. 3, the function Nu = Nu(L/d) is
now monotonic for the Forchheimer/dispersive as
well as for the Forchheimer/non-dispersive (Di = 0)
model. The non-Darcy effects decrease the Nusselt
number as the packed bed becomes coarser (low L/d
ratio). It is worth noting that this Nu decrease is
smaller when dispersion is included in the Forch-
heimer model.

Our computations were confined to low super-
critical Ra,, < 150 values and no attempt was made
to solve the wave number selection problem ; the wave
number values considered were close to the critical,
equations (12). To some extent, our heat transfer
results for water-saturated glass beds presented in Fig.
3 complement the predictions of Kvernvold and
Tyvand [5]. Using the wave number that maximizes
the heat transport, Kvernvold and Tyvand [5] com-
puted the Nu vs Ra,, curve for up to Ra,, ~ 400 for
water—glass beds. Although their results generally
agree with experiments, several points need to be
resolved before the validity of their model is justified :

(a) they followed the Nusselt number curve through
the inflection point (by solving the two-dimensional
steady problem) where the oscillatory regime is known
to initiate, cf. Combarnous [2];

(b) the inertial effects were neglected a priori;

(c) Kvernvold and Tyvand [5] predicted that dis-
persion becomes important in a regime where the
validity of the dispersion model is questionable.

The small-scale deviations of our predictions from
the measurements, see Figs. 3 and 4, can be attributed
to the following deficiencies of our model. Firstly, the
wave number selection problem was not addressed in
this work. It is evident that the wavelength of the
convection rolls varies very little after the onset but
the Nusselt number depends rather strongly on it.
Secondly, although care was taken to use measured
values of the thermophysical parameters of the
medium, factors such as the medium nonuniformity
near the walls and the contribution from radiation
were not considered. In the case of very coarse beds
(2-3 layers of beads) saturated with air, the afore-
mentioned factors become important especially as far
as their influence on the effective conductivity and
dispersivity is concerned. In that case, a more refined
solution can be obtained by treating the medium as a
fluid—solid heterogeneous system and using separate
governing equations for the two phases. Nevertheless,
the fact that we obtained good agreement between
theory and experiments by a continuum approach
implies that the introduced homogeneous model
remains functional at least for low supercritical Ray-
leigh numbers.

6. CONCLUSION

A fundamental study of the porous Bénard problem
is performed in order to explain some of the large-
scale deviations in the Nusselt number measurements
found in the literature. Numerical simulations are per-
formed by using a non-Darcian model which includes
Forchheimer’s extension (inertial term) and the ther-
mal dispersion contribution to the effective con-
ductivity. The predicted Nusselt number results are
justified through comparison with measurements,
some of which are obtained by the present authors
and the rest are reported by Close et al. {1] and Com-
barnous {2]. The good agreement of our predictions
with measurements in the range Ra, < Ra,, < 150
suggests the following.

(1) Measured thermophysical data for the fluid—
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solid matrix medium should be used when possible.
This applies to the values of porosity, permeability,
stagnant conductivity and dispersivity.

(2) Dispersion cannot be neglected a priori even
in natural convection in porous media where the
velocities are low unless d/L — 0. In that limit, the
Darcian model is a good approximation.

(3) For shallow packed beds, the role of the scale
parameter d/L is always important and is manifested
both through the dispersive component of con-
ductivity and the inertial (Forchheimer) term. Com-
pared to the predictions of the classical Darcian
model, the Nusselt number is decreased for very
coarse beds. Dispersion dominates inertia and
increases the Nusselt number when d/L is of O(10~")
unless the porous medium Prandtl number is of
0(1072) or less. In that case, inertia dominates and
Nu is decreased.
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DISPERSION DANS LA CONVECTION THERMIQUE CELLULAIREA L'INTERIEUR
D’'UNE COUCHE POREUSE

Résumé—On étudie numériquement et expérimentalement la convection naturelle bidimensionnelle dans
des lits fixes horizontaux saturés. Le modéle classique de Darcy est élargi par le terme de Forchheimer
(inerticl) et la conductivité thermique effective du milieu est représentée par la somme d’un terme de
stagnation et d’un autre de dispersion (hydrodynamique), ce dernier étant proportionnel a l'amplitude de
la vitesse locale de filtration. L’analyse de bifurcation du probléme de Bénard en milicu poreux, avec termes
d’inertie et de dispersion, prouve que les résultats du modéle classique de Darcy sont encore valables au
début de la convection avec faible dispersion. Les deux termes sont importants pour la convection
permanente dans lits fixes serrés. L'effet de la dispersion sur le nombre de Nusselt est plus grand que celu
de Vinertie tant que le nombre de Prandti du milieu poreux est de 'ordre de 0,01 ou inférieur. Le rapport
de I'épaisseur de la couche au diamétre de bille est un paramétre significatif du probléme qui peut aider &
comprendre quelques résultats expérimentaux contradictoires.
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DISPERSION BEIM AUFTRETEN VON KONVEKTION IN ZELLIGEN, POROSEN
SCHICHTEN

Zusammenfassung—Es wird iiber numerische und experimentelle Untersuchungen der zweidimensionalen,
auftriebsbedingten Konvektion in gesittigten, horizontalen Festbetten berichtet. Das klassische Darcy-
Modell wird um den Forchheimer-Term erweitert und die effektive Wirmeleitfahigkeit des Mediums als
Summe einer ruhenden und einer hydrodynamischen, dispersiven Komponente, welche proportional zur
ortlichen Filtergeschwindigkeits-Amplitude ist, dargestellt. Eine Analyse des Bénard-Problems pordser
Medien mit Termen fiir die Dispersion und die Trigheit zeigt, daB die Ergebnisse des klassischen Darcy-
Modells auch beim Einsetzen von Konvektion fiir schwache Dispersion giiltig sind. Beide Terme sind fiir
die stationire Konvektion in flachen Festbetten von Bedeutung, Der Einflul der Dispersion auf die Nusselt-
Zabhl ist stirker als derjenige der Trigheit, falls die Prandtl-Zahl nicht im Bereich von 0,01 oder darunter
liegt. Das Verhiltnis von Schichtdicke und Korndurchmesser stellt einen wesentlichen Parameter dar, der
einige widerspriichliche Versuchsergebnisse zu erkldren hilft.

JUCIIEPCUS ITPU SYEUCTOMN TEIMJIOBON KOHBEKIIUM B IIOPUCTHIX CIIOAX

AmHOTAIHS—YHCNIEHHO M JKCIEPMMEHTANILHO HCCIIEAYETCA Cliy4ail JBYMEpPHOH KOHBEKIHMH, BHI3BAHHOM
noabeMHBIMH CHAAMH, B HaCHLIIEHHBIX FOPU3OHTANBHBIX ILTOTHIX cioax. Knaccuyeckas mopens Mapen,
060o0meHHass Ha ocHOBe HMHepumoHHoro wiena (QopmxaiimMepa u 3ddexkTUBHOR TemmONPOBOAHOCTH
cpebl, NPEACTABJCHA B BHOEC CYMMBI 3aCTOMHO# M (THAPOAMHAMHUYECKOH) QMCIEPCHOHHON COCTaBJIsAIO-
LIMX, MPHYEM MOCNEJHAA NPONOPIMOHAIBHA AMIUIMTYAE JIOKalbHOH ckopocT ¢wibrpauun. Budypxka-
LMOHHBIA aHanM3 mnopucroii 3agaun beHapa ¢ OHCOEPCHOHHBIMH M HHEPLUHOHHBIMHM YJICHAMH
MOKa3bIBAET, YTO PE3YJIbTATHI, NOJYYEHHbIE MO KJIACCHYECKOH MoeH JlapcH, CipaBe/UIABLI IPH BO3HHK-
HOBEHHHM KOHBEKLUMH B ciy4ae cnaboii mucnepcuu. O6a wieHa CYIIECTBEHHBI MU CAy4as YCTOHMMBOMH
KOHBEKIHH B IUIOTHLIX CIOSX MaJoit BeICOTHL 1o cpaBHeHMIO C HHepLHeH BIMSHHE IHCIIEPCHHA HA YHCIIO
Hyccernbra cunbHee npu uucie IIpanarns mopucroit cpeant <0,01. IlokazaHo, 4TO OTHOLICHHE
TOJIUMHBI CI0A K XapakTEPHOMY pa3Mepy SBJIETCH CYLIECTBEHHBIM NMAapaMeTPOM 3afayH, JAKOLMM BO3-
MOXHOCTB OOBACTHTH HEKOTOPYIO IPOTHBOPEUNBOCTb SKCNIEPUMEHTAILHBIX JAHHBIX,
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