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Abstract-A numerical and experimental study is reported for the case of two-dimensional buoyancy- 
driven convection in saturated horizontal packed beds. The classical Darcy model is extended by the 
Forchheimer (inertial) term and the effective thermal conductivity of the medium is represented by the 
sum of a stagnant and a hydrodynamic) dispersive component, the latter being proportional to the local 
Htration velocity amplitude Bifur~tion analysis of the porous Benard problem with dispersive and inertial 
terms proves that the results of the classical Darcy model still hold at the onset of convection for weak 
dispersion. Both terms are important for steady convection in shallow packed beds. The effect of dispersion 
on Nusselt number is stronger than that of inertia unless the Prandtl number of the porous medium is of 
order 0.01 or less. The ratio of layer thickness to bead diameter is shown to be a significant parameter of 

the problem that can help explain some contradictory experimental results. 

1. INTRODUCTION 

ANALYSIS of buoyancy-driven convection in coarse 
porous layers-as exemplified by packed beds of 
spherical beads-is motivated by applications related 
to insulation or energy storage systems. Traditionally, 
a fluid-saturated packed bed is treated as a continuum 
if the layer thickness L is sufficiently larger than the 
bead diameter d. However, experiments by Close et 
al. [l] in shallow horizontal packed beds (small L/d 
ratio) indicated that the results of the continuum 
approach might be still valid near the onset of con- 
vection. In the present work, we assume that the con- 
tinuum model holds and we simply compare its pre- 
dictions with experiments. In the following, we will 
consider the problem of natural convection in a fully- 
saturated packed bed bounded by isothermal imper- 
vious ho~zontal surfaces of infinite extent with the 
lower surface being hotter than the upper. The system 
bifurcates from conduction to convection when a criti- 
cal value of the temperature gradient is exceeded and 
this will be referred to as ‘the porous Benard problem’. 

Careful analysis of the heat transfer measurements 
for the porous Benard problem by Combarnous [2] 
and Close et al. [I] shows that the ratio L,fd should be 
considered as an additional parameter of the problem 
and suggests the need to extend the classical Darcy 
formulation. The work of Neischloss and Dagan [3] 
for natural convection and of Rubin (41 for forced 
convection are early attempts to accomplish this by 
considering the augmentation of the effective heat 
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conductivity due to hydrodynamic dispersion. 
Although the two analytical works mentioned above 
employed different dispersivity models, they both pre- 
dicted a reduction of the heat transport through the 
layer as the ratio Llddecreases. Based on heat transfer 
experiments in beds containing 2-5 layers of poly- 
propylene beads, Close et al. [I] reached the same 
conclusion but suggested that this reduction is an 
inertial effect. They pointed out that their Nusselt 
number data for 5 layers (L/d = 3.87) lie below the 
Nusselt number data of Combarnous [2] for water- 
saturated beds consisting of 17 layers of poly- 
propylene beads (L/d = 13.37). An inconsistency is 
revealed if we examine the two sets of Nusselt number 
measurements by Combarnous [2] for water-satu- 
rated beds (of constant thickness) obtained for two 
sizes of glass beads d = 4 and 1.7 mm ; the Nusselt 
numbers for the former lie above the ones for the 
latter. The same trend is also verified for the water- 
saturated beds of quartz beads, 

Kvernvold and Tyvand [S] solved numerically the 
porous Binard problem employing the same dis- 
persion model as Neischloss and Dagan 19 and found 
that, although for small Rayleigh numbers the heat 
transport decreases with decreasing L/d (same as the 
result of Neischloss and Dagan [3]), for larger Ray- 
leigh numbers the opposite happens. An attempt to 
reduce the scatter ‘in the Nu vs Ra, data in the litera- 
ture was reported by Prasad et al. [6] who used a 
constant effective conductivity that is a function of 
the convective state (Ru,) and of the physical prop- 
erties of the medium. They implemented an iterative 
implicit scheme to compute this effective conductivity 
in terms of existing experimental Nusselt number 
data, but no physical mechanism was provided to 
justify the specific formula for the conductivity, as 
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NOMENCLATURE 

a, thermal diffusivity of the medium, AT temperature difference, rk - Tc [K] 
&/(P& W-‘I 0, w horizontal, vertical velocity components, 

A,, A, Fourier coefficients of the velocity respectively 
amplitude, equation (13d) Y> r horizontal, vertical Cartesian 

b inertial resistance coefficient in equation coordinates, respectively. 

(5) [ml 
c specific heat [J kg- ’ K- ‘3 Greek symbols 
C dispersion coefftcient, equation (7) u dimensionless wave number, 2rr/A 
d spherical bead diameter [m] B volumetric thermal expansion coefficient 
D* ratio of dispersive to stagnant of the fluid [K-l] 

conductivity, equation (3) Y porous medium permeability [m’] 
Da Darcy number, y/L2 0 dimensionless temperature perturbation 
Di dispersivity in equation (7), Cd/L{1 -4) v kinematic viscosity [m’s_ ‘1 

9 gravitational acceleration in the P density &g m - ‘1 
z-direction [m s- ‘1 # porosity 

k* effective thermal conductivity of the w inertial drag coefficient, bL/y Pr,. 

medium, equation (6) [W m- ’ K- ‘1 

k, stagnant thermal conductivity of the Subscripts 
fluid-solid medium, equation (6) C cold 
wrn-‘K’] f fluid 

K total number of Fourier modes in the H hot 
Y-direction k kth order 

L thickness of the porous layer [m] porous medium 
Nu Nusselt number, equation (15) : horizontal average, zeroth order. 
P average pressure of the interstitial fluid 
Pe Peclet number, lq’l(d/u~)( 1 - 4) _ ’ = Superscripts 

Iqltdl~)(k,/~,)tl-bt)-’ C critical value 

Pr, Prandtl number of the medium, v@c),/k, ’ dimensional. 

q dimensionless Darcy superficial velocity 
Ra Rayleigh number, gPAT’L3/(va,,,) Special symbols 

Ra, porous Rayleigh number, Da Ra D z-derivative 
t time [s] <.> volume average over the flow domain 
T dimensionless tem~rature (T’ - Tc)fAT O(.) order of magnitude. 

Close [7] pointed out. When some data for low L/d 
values still diverged, it was postulated that the Darcy 
law fails (Fig. 18 in the paper of Prasad et al. 161). 

Georgiadis and Catton [S] included the inertial 
(Forchheimer) term in the momentum equation and 
used the measured values of the stagnant effective 
conductivity in the energy equation. Their numerical 
predictions of the heat transfer reproduce the large- 
scale scatter of the NU vs Ram data of Jonsson and 
Catton [9] for the porous BCnard problem. According 
to the above model, the inertial effect (its relative 
importance being expressed by the parameter w Da 
that is proportional to d/LB,) diminishes the net 
heat transfer. Hence, the Nusselt number predictions 
of the classical Darcy model (w = 0) should be the 
upper bound. However, the Nu measured by Com- 
barnous [2] for natural convection in polypropylene 
packed beds saturated with water or oil exceed the 
maximum Nu of the Darcy model (obtained by using 
the wave number that maximizes Nu). In view of the 
contradictory (i.e. non-monotonic) behavior of the 

Nu vs L/d results found in the literature, it is obvious 
that another physical mechanism has to be taken into 
account in combination with inertia. The enhance- 
ment of conductivity due to dispersion is a likely can- 
didate. Both inertia and dispersive effects have been 
previously considered by Rubin [4] for forced con- 
vection, by Cheng and Zheng [lo] for mixed con- 
vection boundary-layer flow, and by Hong and Tien 
[l I] for vertical-plate natural convection in porous 
media. 

The mission of the present work is to demonstrate 
the role of dispersion on heat transport when the 
boundary-layer approximation is not applicable and 
the Forchheimer formulation is adopted for natural 
convection in porous media. A canonical problem is 
chosen for this purpose (the porous Benard problem). 
The way in which the dispersive component enters the 
formulation is explained in Section 2 and the non- 
Darcian effects on the onset of convection are studied 
by performing a simple bifurcation analysis in Section 
3. The numerical algorithm is developed in Section 4 
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POROUS 
MATERIAL 

FIG. 1. The porous Btnard problem: natural convection in a fully-saturated packed bed bounded by 
isothermal impervious horizontal surfaces of infinite extent with the lower surface being hotter than the 

upper. 

and its convergence is checked. Finally, the numerical 
solution is compared to experiments in Section 5 and 
a summary of the concluding remarks is presented 
in Section 6. This is a companion to the paper by 
Georgiadis and Catton 181. 

2. FORMULATION OF THE PROBLEM 

The flow domain of the porous Btnard problem is 
shown in Fig. 1. The packed bed is fully saturated with 
a Boussinesq incompressible fluid. The heterogeneous 
system fluid-solid matrix is regarded as a continuous 
medium on the Darcy scale. Thus, we assume that the 
convective motion of the interstitial fluid in the fully- 
saturated packed bed is governed by the following 
equations in non-dimensional form : 

v*q = 0 (1) 

1 aq 
dpr, at - -VP+RaTk- $-wlglq (2) 

(PC), al- 
_____ - = -q*VT+V.[(l+D*)VT] 
(PC), at 

(3) 

where length, velocity, pressure, temperature are 
scaled with L, am/L, pva,/L*, AT, respectively, P 
the local interstitial pressure minus the hydrostatic 
component, and T the local temperature minus the 
cold wall temperature T,. The governing equations, 
equations (l)-(3), are supplemented by the following 
boundary conditions : 

q*&=O, T=l at z=O; 

q-2,=0, T=O at z=l. 
(4) 

The following standard empirical relations are used 
to give the permeability and inertial resistance 
coefficient, cf. Georgiadis and Catton [8] : 

d2qb3 
JJ = 150(1-4)2’ b = 

1.75d 

150(1-4)’ (5) 

We cannot avoid mentioning that the correct for- 
mulation of the problem of convection through 
porous media remains a point of major contention in 
the literature. Concerning the momentum equation, 
many researchers are in favor of the following ‘full’ 
form [12] : 

&[z+q-Vq] = -VP+RaT”e, 

- ;q-wlqlq+ ;v2q. 

Let us present our arguments for reducing the equa- 
tion above to equation (2). There is no controversy 
concerning the Darcian drag term (third term on the 
right-hand side). For the BCnard problem, the last 
term on the right-hand side of the above equation 
(Brinkman’s extension) has been proven to have a 
negligible effect on the onset of cellular convection if 
Da < lo- 3. In our computations, the maximum value 
of Da remains close to 10m3. The magnitude of Da 
expresses the ratio (Brinkman term)/(Darcy drag) 
away from the solid boundaries. Near these bound- 
aries, the Brinkman term is significant because the 
shear increases to accommodate the no-slip condition. 
The latter condition is entirely empirical and has been 
introduced for convenience. An additional com- 
plication of the problem of imposing the proper 
boundary conditions (at the interface between the 
packed bed and the wall) is introduced by the porosity 
variation due to the presence of solid walls. This 
induces higher velocities near the boundaries (chan- 
nelling phenomenon) which, based on the analysis of 
Hong et al. [13] enhances the Nusselt number. We 
performed some preliminary computations for the 
Benard problem with a variable porosity model and 
our results indicated that the relative increase of the 
Nusselt number due to porosity variation near the 
walls is almost balanced by the decrease of Nu pre- 
dicted by the Brinkman-extended model. It makes 
sense that, had we chosen to introduce the Brinkman 
extension in equation (2) we would have to account 
for the porosity variation near the walls (especially 
for the coarse packed beds) in order to be consistent. 
Its theoretical justification pending, Brinkman’s term 
is dropped and we consider here the case of a constant 
porosity medium. The slip condition is imposed at 
the solid walls. The magnitude of the Forchheimer 
quadratic inertial term in the ‘full’ equation (fourth 
term on the right-hand side) is of order 1.75(L/d) 
(l-4)&’ with respect to the convective inertial 
term. Therefore, the latter can be neglected even 
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FIG. 2. Effective axial thermal conductivity in packed beds. 

for the coarse packed beds considered in Section 5. 

It is plausible to assume that there are no steep 
temperature gradients in natural convection and that 
the convective velocities are sufficiently slow for the 
range of Rayleigh numbers considered. Consequently, 
local thermodynamic equilibrium prevails, cf. Whi- 
taker [14], and we postulate that the one-equation 
model (3) can accurately describe the heat transfer 
process in the homogenized porous medium. The form 
of the energy equation (3) was derived by Georgiadis 
and Catton [15] for steady-state heat transport in a 
steady isotropic interstitial field. The appearance of 
D* in the heat transport coefficient in equation (3) 
represents the enhancement of the heat transfer that 
is caused by the hydrodynamic mixing (dispersion) of 
the interstitial fluid at the pore scale. According to 
the stochastic phenomenological model developed by 
Georgiadis and Catton [15] for isotropic porous 
media, the ‘effective’ heat conduction coefficient can be 
written in the form 

k* k, 
-= , ,+CPe 

where k, is the (stagnant) value of the effective con- 
ductivity of the system porous matrix-fluid in the 
absence of convection. Due to equation (6) the 
dimensionless dispersive conductivity component in 
equation (3) becomes 

C d 
D* = l-4 L ~ -lql = DiIql. 

In principle, the value of the dispersion coefficient 
C in equations (6) and (7) depends on the type of 
packing of the bed. For a certain type of Gaussian 
packing [16] and 4 = 0.39, our model gives C = 0.43, 
and this seems to underpredict (for the range Pe > 20) 
the values of the effective axial conductivity measured 
by Levee and Carbonell [17] under transient con- 
ditions (Fig. 2). The aforementioned discrepancy can 

be attributed to the transient heat exchange con- 
tribution to the apparent transport coefficient. Geor- 
giadis and Catton [15] proved that, by adding this 
contribution-as estimated by Levee and Carbonell 
[17]-to expression (7) a realistic estimate of the 
effective axial transport coefficient under transient 
conditions is obtained that agrees with measurements 
for the whole range of Peclet numbers. Therefore, 
expressions (6) and (7) remain valid for steady-trans- 
port through packed beds irrespective of the Peclet 
number. We decided to perform our calculations with 
the value C = 0.36, which gives the best fit of the data 
obtained by Levee and Carbonell [17] for the range 
0 < Pe < 20 as shown in Fig. 2. This includes the 
range of Peclet numbers (0 < Pe < 10) encountered in 
natural convection for the range of Rayleigh numbers 
that we considered during the course of our com- 
putations. For comparison, we also plot in Fig. 2 
the curve corresponding to the quadratic dispersion 
model used by Kvernvold and Tyvand [5] which 
clearly underpredicts the data for approximately the 
same range of Peclet numbers. The quadratic dis- 
persion model was based on the analytical work of 
Saffman [18] who suggested a quadratic dependence 
of the effective transport coefficient on velocity for 
asymptotically small Peclet numbers. 

3. ONSET OF CONVECTION: 

BIFURCATION ANALYSIS 

The basic solution of equations (l)-(4) is the con- 
ductive state 

qb = 0, T, = l-z. 

Following the formulation of Joseph [ 191, we set 9 = 
Rai’, rescale 0 = 9(T- Tb), and derive the following 
perturbation equations from equations (l)-(4) and 

(7) : 
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2 2 fq-W&,+oDalqlq = -DaVP (8a) 

(P&l a@ of l+qm-ww-v28 

-Div. {~q~(V&-B6,)) = 0 (Sb) 

(q,0)E4, f = [q,o:V.q= 0 in R, 

q-n=0 on ai2, n*VB=O on S, 

@=O on z=O,I] (8~) 

where aR is the boundary of the flow domain, n its 
unit normal vector and S the lateral boundary which 
is assumed to be insulated. In order to reconcile our 
assumption of the laterally unbounded porous layer 
with the existence of a ‘slip’ lateral surface S, we can 
identify the latter with the vertical boundary enclosing 
a pair of counterrotating rolls of width 1 (Fig. 1). 
Such a cellular form appears after the onset of the 
convective motion as we will show in the next para- 
graph. The corresponding two-dimensional (y, z) flow 
domain is LI = [O, A] x [O, 11, 

Denoting by Q the four-component vector with 
components (q, B), the bifurcation problem (8) can be 
written in matrix form 

L.Q+N(Q) = -DaVp; QEY (9) 

where L and N are 4 x 4 matrix linear and non-linear 
operators, respectively. We try a double expansion in 
terms of the classical bifurcation parameter E and Di. 
There is no power series in E because IqI (which appears 
in the non-Darcian terms of equations (8a) and (8b)) 
is not analytic. It is probably valid to assume [20] that 

W(s, Di) = ~~+&~,+D~~*+u(&, Di) (lOa) 

Q(E, Di) = &Qo+&*Q, +ED~Q~+o(E*,ED~) (lob) 

where Q,, is the solution of equation (9) that bifurcates 
from the basic state (conduction) when a(& = 0) = 
W,. Inserting expansion (10) into equation (9), im- 
posing boundary condition (8c), and following the 
procedure outlined in Section 76 of Joseph [19], 
we obtain 

O(E) : ~o<w3~0> = <IQo12) (114 

O(E2) : 2~,~w~e~~ = {~Du~,q~13~}~ (lib) 

O(E Di) : .czR2=o uw 

where w,, is the z-component of q, and (qo, 0,) are the 
components of Q,,. The angular brackets designate 
the volume-averaged integral defined on the flow 
domain R. The lowest order problem (O(&)), which is 
the spectral problem for the stability of the conduction 
solution (basic state) of equations (l)-(3), is identical 
to the zeroth order problem in the Darcy porous 
BCnard formulation (no inertia or dispersion terms), 
cf. Joseph [19]. Consequently, this spectral problem 
has a simple real eigenvalue (zero), convection starts 

in the form of two-dimensional rolls, and the critical 
parameters corresponding to the onset of convection 
are 

8, = ,/Ra; = 2~, u= = n. 02) 

Equation (1 la) is the energy identity obtained for 
E = 0 by multiplying the momentum equation (Sa) by 
q and averaging over fi. From equations (12) and 
(1 la) we deduce that (w,,@~) is positive defmite. Equa- 
tions (1 lb) and (1 lc) are the solvability conditions 
(section 76 of Joseph 1191). As a result of the existence 
of non-analytical terms in equations (8), RI is not 
unique but reverses its sign around E = 0. Since (no, 0,) 
are uniquely defined, equations (1 la) and (1 lb) imply 
that &i is proportional to ]ef. Equation (1 lc) implies 
that the contribution of dispersion to the onset of 
convection is null, correct to O(Di). Hence, the bifur- 
cation curve @ has a vertex at W0 and two symmetric 
supercritical bifurcation branches. This result has also 
been reported by Nield and Joseph [21] for the special 
case Di = 0. 

We have shown that, for weak dispersion (Di << l), 
neither the Forchheimer term nor the dispersion con- 
tribution influence the onset of convective motion 
as defined by equations (12). This has been verified 
(within experimental error) by Close et al. [ 1] even for 
the case of very coarse packed beds (low L/d ratio) 
such as the one consisting of only two layers of spheri- 
cal beads. The insensitivity of the critical convection 
parameters of the porous Binard problem to dis- 
persion has also been proven by Neischloss and 
Dagan [3] for the quadratic dispersion model sug- 
gested by Saffman [lS]. Employing the same model, 
Kvernvold and Tyvand [5] went further and delin- 
eated the linear stability regime for two-dimensional 
convection. According to their calculations, dis- 
persion (O* # 0) extends the stability ‘balloon’ and 
thus the flow remains stable to cross-roll instabilities 
for Rayleigh numbers larger than the ones predicted 
by the classical Darcy model. 

4. NUMERICAL SOLUTION 

OF FINITE AMPLITUDE 

TWO-DIMENSIONAL CONVECTION 

Based on our conclusion in the previous section 
that conv~tion in the porous BCnard problem is 
initiated in the form of straight horizontal rolls, we 
seek a steady two-dimensional solution of equations 
(l)-(4) in terms of the following Fourier expansions 
which have been truncated to K terms : 

(13a) 

w(y, 2) = J2 -f w&) cos cr,Y 
k=, 

U3b) 

T(y,z) % T,(z) +J2 : ~~(Z)cosDTkY (13c) 
*- 1 
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+J2 I: A,(Z)COSW (13d) 
k=l 

where ak = ka. By substituting equations (13) into 
equations (I)-(3), eliminating the pressure, and 
weighting and integrating over the wavelength, we 
obtain the weak fo~ulation of the problem as a sys- 
tem of Galerkin ODES 

(xkuk + Dw, = 0 (14a) 

&(D”-a’)w,+~;RaT, = w&Df:+a;f;) 

(14b) 

(1+,,/2DiA,) DzT~+~2~~D~~D~~ 

= 2 D(w,+T,)-LX F D(A,DT,) (14~) 
k=l k= t 

(1+,/2DiA )+ D’A 
o 42 

- ~(~~,-D~DA~~)-J2DiDA~ DT, 1 
(1+~2L)iA,)&- FAxa:+ ~Dw,, 

J2 2J2 1 Tk 

-D~A~D*T~+(~~-D~DA~)DT~ (14) 

where the notation introduced by Georgiadis and 
Catton [83 is kept. The functionals f:, f$ in equa- 
tion (14b) are the projections of the non-linear terms 
of the momentum equation @a) onto mode k 

and Z,(k, n, m), Zz(k, n, m) are the convolution pro- 
ducts defined by Georgiadis and Catton [8] that take 
the values 1, - 1 and 0. The expression for the Nusselt 
number which represents the net heat transfer across 
the layer becomes 

Nu- -~~[(1+Dl]q,~~]~=~d~ 

z - DT,(O) - Di 
[ 

,,/2A,(O} DT,(O) 

+ f Ak(O)DTk(O) . 
k= 1 I 

(15) 

Table I. Nusseit number convergence of the Fourier expan- 
sion (100 z-grid points) 

- -___- 

K ivu [NUK,,2-ivU] x IO5 

4 1.58659 256 
6 1.58870 45 
8 1.58904 11 

10 1.58913 2 
12 1.58915 

- 

The expression above is equivalent to an Lz (weak) 
norm of solution (13). 

The 2Kf 1 ODES, equations (14b)-(14d), are 
approximated with centered finite differences on a 
uniform grid in the vertical z-direction and solved 
iteratively. Expansion (13d) is the basic transfer for- 
mula for the implementation of a pseudospectral (col- 
location) scheme that we employ. At each iteration, 
the Fourier coefficients A,,, A,, Aa, . . . , A, (spectral 
space) are computed with a discrete Fourier transform 
after solving equations (14a)-(14b) and evaluating {q] 
on a number of equally-spaced points (physical 
space). At least 3K sample points are needed for the 
Galerkin method to avoid aliasing errors; we per- 
formed our computations with 100 sample points per 
wavelength. The iterations are terminated after the 
following pointwise-error criterion is satisfied : 

ITf”‘-Tt’I] < lO-6 (16) 

where (i) is the interation counter. The error tolerance 
in expression (16) was chosen so that the iteration 
error is smaller than the truncation error induced by 
the spectral and finite-difference approximations. 

In order to check the accuracy and convergence of 
the numerical scheme as outlined above, we solve 
equations (14) for the sample case Ra, = 72, 
w Da = 0.0432, Di = 0.2312, c( = rr which corresponds 
to the air-saturated bed with 3 layers of polypropylene 
beads (Section 5). Firstly, we check the convergence 
of the Fourier series with respect to the weak norm 
L, as represented by the Nusselt number (15). Com- 
putations are performed on a uniform z-grid (100 
points) for increasing truncation orders K and the 
results are displayed in Table 1. As K increases, Nu 
converges at a fast exponential rate. Secondly, tests of 
Hu and pointwise convergence of the finite-different 
scheme are performed by decreasing the mesh size 
across the layer for constant K = 6 (Table 2). The 

Table 2. Nusselt number and pointwise convergence of the 
centered unite-different scheme for K = 6 

z-Grid points 

25 
50 

100 
200 

- 

NU T,(0.4) x IO2 w I(O.4) 

1.59709 6.5532 2.150307 
1.59070 6.5185 2.138275 
1.58870 6.5089 2.134932 
I.58811 6.5063 2.134051 
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FIG. 3. Heat transport in water-saturated beds of glass beads: dispersion effects for high L/d values. 

results demonstrate that the finite-difference scheme 
converges at a quadratic rate as the mesh size 
decreases. This is the theoretical convergence rate for 
the second-order (centered) difference approxima- 
tions that we employed. The computations reported 
in the next section are performed with a mesh size 
of 0.01 (100 z-grid points) and K = 6 Fourier modes 
in expansion (14). 

5. NUMERICAL RESULTS AND COMPARISON 
WITH MEASUREMENTS 

The first case to be considered is that of a water- 
saturated bed of glass beads. Steady-state heat trans- 
fer meas~ements were performed by the authors in a 
convection cell of rectangular cross-section of dimen- 
sions 0.125 x 0.152 m randomly packed with glass 
beads of diameter d = 6 mm and saturated with dis- 
tilled water. The experimental procedure used is simi- 
lar to the one presented by Jonsson and Catton [9]. 
In our calculations, we use the values of porosity 
tp = 0.394, stagnant conductivity k, = 1.1 W m-’ 
K-’ and permeability y = 3.7 x IO-’ m2 which have 
been measured by Jonsson and Catton [9] for the same 
water-saturated glass beads. Using tabulated data for 
distilled water at a mean temperature of 13°C we 
obtain Prm = 4.5 and the rest of the input parameters 
are calculated from equations (5) and (7) with 
C = 0.36. 

In Fig. 3, we present the predicted values of the 
Nusselt number for Ra, = 60 and 100 and the fol- 
lowing parameter ranges : 

5.25 < L/d < 1050 

4.11 x 10e6 < w Da < 8.22 x low4 

0.0006 < Di < 0.1132. 

We also plot for comparison the Nusselt numbers 
obtained by interpolation of the experimental data 
obtained by the present authors for L/d = 5 and 10 

Table 3. Thermophysical data for air-saturated beds of poly- 
propylene beads (d = 18.4 mm) 

Number 
of layers L/d C$I Pr,,, oDax IO’ Di 

- 17 13.37 0.260 0.1484 0.7947 0.0364 
5 3.875 0.332 0.1484 3.0366 0.1391 
3 2.467 0.369 0.1735 4.3196 0.1735 
2 1.761 0.409 0.1919 5.8421 0.3459 

.._ 

and of data reported by Combarnous [2] for 
L/d = 13.37 and 31 S. The error margins shown in 
Fig. 3 correspond to +_ 10% error in Nusselt number 
as estimated by the present authors. The computed 
Nusselt numbers are obtained for several wave num- 
bers close to the critical. We assume that the selected 
wave number for each Ra, does not depend on the 
parameter L/d. For each wave number, the predicted 
Nu vs L/d curves show a maximum and approach the 
Forchheimer model curves (Di = 0) asymptotically as 
L/d + co. This trend is justified by the experimental 
evidence available. There is very little difference be- 
tween the Nusselt number predictions of the Forch- 
heimer model and the Darcy model (w = Di = 0), a 
fact that is expected since the relative importance of 
the inertial term is expressed by the parameter w Da, 
which happens to be small in the case above. Note 
that Nusselt numbers higher than the Darcy pre- 
dictions can be attained for certain values of L/d only 
if Di # 0. 

The second set of numerical calculations cor- 
responds to the experiments in air-saturated ordered 
beds of polypropylene beads performed by Close et 
al. [l]. For the cases of 2, 3, and 5 layers, we use 
the measured values of porosity and stagnant porous 
medium conductivity given by Close et al. [l]. Based 
on the latter, on thermophysical data for air at a mean 
temperature of 45°C and on relations (5) and (7) with 
C = 0.36, the input parameters for the computations 
are evaluated and presented in Table 3. For the case 
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Table 4. Numerical predictions of the Nusselt number of the porous Benard 
problem (air-polypropylene beds) for the critical wavelength 

._ 
Kvernvold 

and 
Tyvand [5] Present work 

- 
Darcy Forchheimer Dispersion 

RaJRaf. Darcy Di=w=O Di = 0 Di = 0.0364 

1.2 1.352 1.353 1.293 1.264 
1.6 1.870 1.872 1.767 1.807 
1.8 2.072 2.075 1.954 2.052 

3.0 

p - - 2.5 A 3.871 5 
I 2.47 3 

Nu 2’o 
Y? 4.76 2 

40 50 60 60 100 140 

Ram 

RG. 4. Effect of the ratio L/d on heat transport in air-saturated beds of polypropylene beads (d = 18.4 mm). 

L/d = 13.37, we assume that the porosity has reached 
the minimum possible value for the rhombohedral 
packing (highest density) and that the stagnant con- 
ductivity is the same as in the 5 layer case. All the 
computations are performed for the critical wave 
number a” = x. 

In Table 4, we first compare the predictions of the 
Darcy model (w = Di = 0), of the Forchheimer model 
(Di = 0), and of the full dispersion model, equations 
(l)-(4), for the case L,/d = 13.37 f- 17 layers of air- 
saturated polypropylene beads). The results of our 
computations for the Darcy-BCnard problem agree 
very well with the results of Kvemvold and Tyvand 
[5]. As Fig. 4 shows, dispersion lowers the Nusselt 
number for low Ra,,, values but this trend is reversed 
as Rn, increases. The effect of dispersion becomes 
more dramatic as L/d decreases for 5, 3, and 2 layers 
of beads ; the good agreement with the measurements 
of Close et al. [l] is encouraging. On the other hand, 
it is evident that the Nusselt number predictions of 
the Forchheimer model (only inertial effects con- 
sidered) do not follow the large divergence of the 
experimental data (Fig. 4). This demonstrates the 
importance of dispersion on natural convection in 
shallow (coarse) packed beds. 

The following general observations are based on 
the computed velocity and temperature fields in the 

porous Benard problem when the inertia term is small. 
The inertia effect depends on the magnitude of the 
porous Ptandtl number as we will show in the next 
paragraph. Dispersion always decreases the mean 
temperature gradient DT,,(z) (since it augments the 
effective conductivity of the medium) but the net effect 
on the total heat transport is more complicated. As 
L/d + 30 (e.g. in geophysical porous layers like aqui- 
fers and field soils), the velocity and temperature 
gradient vary very little and thus, according to equa- 
tions (7) and (15) the net heat transport approaches 
the Forchheimer limit. As L/d decreases from large to 
medium values (packed beds found in the laboratory), 
the velocity and temperature gradient also decrease 
but Di increases proportionally to d/L; the net effect 
on the Nusselt number, equation (15), is that it reaches 
a maximum value and then decreases. It is in this 
regime of low L/d values that the cont~bution of the 
present work becomes apparent. Our results indi- 
cate-and this is verified by experiments-that the 
Nusselt number predicted by the Darcy model cannot 
be considered as an upper bound on the heat transfer. 
Although inertia always decreases NE, dispersion can 
act to increase or decrease it (Table 4). For natural 
convection from a vertical plate imbedded in a packed 
bed, Hong and Tien [l l] concluded that dispersion 
increases Nu. Our numerical solution shows that ther- 
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Table 5. Numerical predictions of the Nusselt number of the porous Btnard problem 
(mercury-lead beds) for the critical wavelength and Ra, = 60 

NU 

Lid UDU Di 

5.26 0.1782 0.1136 
13.15 0.0720 0.0435 
26.31 0.0357 0.0226 
52.62 0.0178 0.0114 

263.1 0.0036 0.0023 
263 1 .O 0.0004 0.0002 

Darcy 
Di=o=O 

1.7817 
1.7817 
1.7817 
1.7817 
1.7817 
1.7817 

Dispersion 

1.2039 
1.3328 
1.4786 
1.6027 
1.7400 
1.7774 

Forchheimer 
Di = 0 

1.1181 
1.3065 
1.4654 
1.5905 
1.7349 
1.7768 

ma1 dispersion can have a stronger effect on the net 
heat transfer than that of inertia. The latter conclusion 
was also reached by Cheng and Zheng [lo] for mixed 
convection. 

Let us see what happens when inertia becomes as 
important as dispersion. Based on the governing equa- 
tions for the porous Benard problem, equations (2) 
(3), and (7), the dispersive term is of O(d/L), while 
the magnitude of the inertia term is w Da which is of 
0(10m2d/L Pr; ‘) when 4 = 0.4. Thus, inertia cannot 
be neglected compared to dispersion when the porous 
Prandtl number is of O(lO-‘) or less. We report here 
some numerical results for such a case: convection 
in a mercury-saturated bed of lead beads with 
Pr,,, = 0.018. The thermophysical parameters are 
given in the experimental work of Jonsson and Catton 
[9] who reported Nu measurements only for one fixed 
thickness bed with L/d = 26.3 1. In Table 5, we list the 
numerical prediction of Nu as a function of L/d, for 
Rn, = 60, CI = n. In contrast to the trend of the large 
Pr,,, results of Fig. 3, the function Nu = Nu(L/d) is 
now monotonic for the Forchheimer/dispersive as 
well as for the Forchheimer/non-dispersive (Di = 0) 
model. The non-Darcy effects decrease the Nusselt 
number as the packed bed becomes coarser (low L/d 
ratio). It is worth noting that this Nu decrease is 
smaller when dispersion is included in the Forch- 
heimer model. 

Our computations were confined to low super- 
critical Ra, < 150 values and no attempt was made 
to solve the wave number selection problem ; the wave 
number values considered were close to the critical, 
equations (12). To some extent, our heat transfer 
results for water-saturated glass beds presented in Fig. 
3 complement the predictions of Kvernvold and 
Tyvand [S]. Using the wave number that maximizes 
the heat transport, Kvernvold and Tyvand [5] com- 
puted the Nu vs Ra, curve for up to Ra, N 400 for 
water-glass beds. Although their results generally 
agree with experiments, several points need to be 
resolved before the validity of their model is justified : 

(a) they followed the Nusselt number curve through 
the inflection point (by solving the two-dimensional 
steady problem) where the oscillatory regime is known 
to initiate, cf. Combarnous [2] ; 

(b) the inertial effects were neglected a priori; 

(c) Kvernvold and Tyvand [S] predicted that dis- 
persion becomes important in a regime where the 
validity of the dispersion model is questionable. 

The small-scale deviations of our predictions from 
the measurements, see Figs. 3 and 4, can be attributed 
to the following deficiencies of our model. Firstly, the 
wave number selection problem was not addressed in 
this work. It is evident that the wavelength of the 
convection rolls varies very little after the onset but 
the Nusselt number depends rather strongly on it. 
Secondly, although care was taken to use measured 
values of the thermophysical parameters of the 
medium, factors such as the medium’nonuniformity 

near the walls and the contribution from radiation 
were not considered. In the case of very coarse beds 
(2-3 layers of beads) saturated with air, the afore- 
mentioned factors become important especially as far 
as their influence on the effective conductivity and 
dispersivity is concerned. In that case, a more refined 
solution can be obtained by treating the medium as a 
fluid-solid heterogeneous system and using separate 
governing equations for the two phases. Nevertheless, 
the fact that we obtained good agreement between 
theory and experiments by a continuum approach 
implies that the introduced homogeneous model 
remains functional at least for low supercritical Ray- 
leigh numbers. 

6. CONCLUSION 

A fundamental study of the porous Benard problem 
is performed in order to explain some of the large- 
scale deviations in the Nusselt number measurements 
found in the literature. Numerical simulations are per- 
formed by using a non-Darcian model which includes 
Forchheimer’s extension (inertial term) and the ther- 
mal dispersion contribution to the effective con- 

ductivity. The predicted Nusselt number results are 
justified through comparison with measurements, 
some of which are obtained by the present authors 
and the rest are reported by Close et al. [l] and Com- 
barnous [2]. The good agreement of our predictions 
with measurements in the range Ra& < Ra, < 150 
suggests the following. 

(1) Measured thermophysical data for the fluid- 
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solid matrix medium should be used when possible. 
This applies to the values of porosity, permeability, 
stagnant conductivity and dispersivity. 

(2) Dispersion cannot be neglected a priori even 
in natural convection in porous media where the 
velocities are low unless d/L + 0. In that limit, the 
Darcian model is a good approximation. 

(3) For shallow packed beds, the role of the scale 
parameter d/L is always important and is manifested 
both through the dispersive component of con- 
ductivity and the inertial (Forchheimer) term. Com- 
pared to the predictions of the classical Darcian 
model, the Nusselt number is decreased for very 
coarse beds. Dispersion dominates inertia and 
increases the Nusselt number when d/L is of O(lO-‘) 
unless the porous medium Prandtl number is of 
O(lO-*) or less. In that case, inertia dominates and 
Nu is decreased. 
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DISPERSION DANS LA CONVECTION THERMIQUE CELLULAIREA L’INTERIEUR 
DUNE COUCHE POREUSE 

R&urn&On ttudie numeriquement et experimentalement la convection naturelle bidimensionnelle dans 
des lits fixes horizontaux saturts. Le modtle classique de Darcy est elargi par le terme de Forchheimer 
(inertiel) et la conductiviti th ermique effective du milieu est represent&e par la somme d’un terme de 
stagnation et dun autre de dispersion (hydrodynamique), ce demier etant proportionnel a l’amplitude de 
la vitesse locale de filtration. L’analyse de bifurcation du probleme de Benard en milieu poreux, avec termes 
d’inertie et de dispersion, prouve que les risultats du modele classique de Darcy sont encore valables au 
debut de la convection avec faible dispersion. Les deux termes sont importants pour la convection 
permanente dans lits fixes serres. L’effet de la dispersion sur le nombre de Nusselt est plus grand que celui 
de l’inertie tant que le nombre de Prandtl du milieu poreux est de l’ordre de 0,Ol ou inferieur. Le rapport 
de l’epaisseur de la couche au diametre de bille est un parametre significatif du probleme qui peut aider a 

comprendre quelques resultats exptrimentaux contradictoires. 
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DISPERSION BEIM AUFTRETEN VON KONVEKTION IN ZELLIGEN, PORtiSEN 
SCHICHTEN 

Zusammenfaswng-Es wird iiber numerische und experimentelle Untersuchungen der zweidimensionalen, 
auftriebsbedingten Konvektion in geslttigten, horizontalen Festbetten berichtet. Das klassische Darcy- 
Model1 wird urn den Forchheimer-Term erweitert und die effektive Warmeleitfahigkeit des Mediums als 
Summe einer ruhenden und einer hydrodynamischen, dispersiven Komponente, welche proportional zur 
artlichen Filtergeschwindigkeits-Amplitude ist, dargestellt. Eine Analyse des Btnard-Problems porijser 
Medien mit Termen fur die Dispersion und die Trlgheit zeigt, da5 die Ergebnisse des klassischen Darcy- 
Modells such beim Einsetzen von Konvektion fiir schwache Dispersion giiltig sind. Beide Terme sind fur 
die stationare Konvektion in flachen Festbetten von Bedeutung, Der Einflu5 der Dispersion auf die Nusselt- 
Zahl ist starker als derjenige der Tragheit, falls die Prandtl-Zahl nicht im Bereich von 0,Ol oder darunter 
liegt. Das Verhaltnis von Schichtdicke und Korndurchmesser stellt einen wesentlichen Parameter dar, der 

einige widerspriichliche Versuchsergebnisse zu erkllren hilft. 

AMCllEPCki5I I-IPR WIEkiCTOtl TEl-UIOBOtl KOHBEKI&iki B I-IOPkiCTbIX CJIOIIX 

AmoTaunt+%icneHtio H sxcnepHhteHTa.llbHo mxnenyeTcn cnyvail nnyh5epIioii KOHBeKIviH, BbI3BaHHOfi 
nOfJE.eMHbIMH CHLIIMW, B HaCbWeHHbIX rOpH30HTaJIbHbIX n.lIOTbIXCJIOIIX.~aCCH%CKaK MOneJIb AapCH, 

o6o6mennan Ha OCIiOBe HHepIlHOHHOrO YJIeHa @OpIlIXaiiMepa W 3+$eKTHBHOii TeI"lOnpOBO~HOCT~ 

CpeAbl,npeIWTaBJleHa B BHJIe CyMMbl 3aCTOfiHOii H (l-HllpO~HHahSHYeCKOii)DiCne~HOHHOii COCTaBJlRlO- 

LUHX, IIpH’IeM IlOCJIeAHIll npOnOpIViOHWlbHa aMIIJlHT)‘Jle JIOKaJIbHOii CKOpOCTH &iJlbTpalWi. hil$~Ka- 

1IHOHHbIi aHtUIH3 nOpHCTOfi 3aLIa'IH &Hapa C nHCnepCHOHHbIMH H HHepLIHOHHbIMH WeHaMW 

noKa3bmaeT,qTOpe3ynbTaTbr,nonyYeHHbleno xnaccw~ecxoiihfo~enki flapca,cnpasenmissrnpH BO~HHK- 

HOBeHHH KOHBeKWili B CJly'iae cnadoii AEnepCliH. 06a WIeHa CyrueclBeHHb, &IIR cayvan yCTOi-iVHB0i-i 

KOHBeKUHH B nJIOTHbIXCJlOI(XMWlOZi BbtCOTbI.~0CpaBHeHSiK1C%iHepI@iefi B,!HKHHeLlEWlepCml Ha911CJlO 

HycceTnbTa CHJIbHee npH wcne npaHllTJIK nOpHCToii cpenbl gO,Ol. IIoxa3atio, ST0 ornomemie 
TOJlWHbI CnOR K XapaKTepHOM,'pa3Mep,'RBJleTCR CyurecTBeHHbIM napaMeTpOM 3a~a'IH,L(aIOWHM B03- 


